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Abstract
We provide new expressions for the scattering amplitudes in the soliton–
antisoliton sector of the elliptic sine-Gordon model in terms of cosets of the
affine Weyl group corresponding to infinite products of q-deformed Gamma
functions. When relaxing the usual restriction on the coupling constants,
the model contains additional bound states which admit an interpretation
as breathers. These breather bound states are unavoidably accompanied by
Tachyons. We compute the complete S-matrix describing the scattering of the
breathers among themselves and with the soliton–antisoliton sector. We carry
out various reductions of the model, one of them leading to a new type of
theory, namely an elliptic version of the minimal D

(1)
n+1-affine Toda field theory.

PACS numbers: 05.45.Yv, 02.30.Ik, 11.10.Lm, 11.25.Sq, 11.55.Ds

1. Introduction

By investigating a Z4-symmetry of the particle wavefunctions for a soliton and an antisoliton,
the elliptic sine-Gordon model was introduced originally by Zamolodchikov more than twenty
years ago [1]. The S-matrix was found to correspond to the transfer matrix of Baxter’s eight-
vertex model [2–4]. The model has two free parameters ν and � which were mutually restricted
in [1] in order to avoid the presence of Tachyons. Thus, if it was not for that restriction, the
model could be viewed as a generalization of the sine-Gordon model. Unfortunately, when
mutually constraining the parameters, it corresponds in the trigonometric limit only to the
soliton–antisoliton sector with no bound states. This means that the entire breather sector is
absent.

The purpose of this paper is to investigate whether a meaningful breather sector of the
model can be constructed. When relaxing the constraint on the parameters several poles in the
soliton–antisoliton S-matrix amplitudes will move into the physical sheet. We will demonstrate
below that some of them lie on the imaginary axis and therefore, with the appropriate sign
of the residue, admit the usual interpretation as bound states corresponding to breathers.
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In addition, there are redundant poles which are of a tachyonic nature as they are in the
physical sheet beyond the imaginary axis. In the context of integrable models solutions
for scattering amplitudes with such properties have been discarded right away up to now.
Nonetheless, Tachyons have emerged initially undesired in other areas and subsequently have
been turned into virtues. For instance, recently there has been great activity in the context of
string theory (see for instance [5–7] and references therein), where Tachyon condensates have
turned out to be important. They also appear to be very useful in the context of cosmological
considerations (see for instance [8, 9] and references therein). Here we want to adopt the
lesson from string theory and cosmology and allow them to be present. The gain of this
attitude is that we have additional poles at our disposal which admit the usual interpretation
as bound states, which can be associated with breathers.

Our paper is organized as follows: in section 2 we assemble and derive various properties
of q-deformed gamma functions and relate them to Jacobian elliptic functions. In section 3 we
demonstrate how the affine Weyl group can be utilized to solve the central functional equations
leading directly to an infinite product solution for the soliton–antisoliton backward scattering
amplitude in terms of q-deformed gamma functions. In section 4 we discuss the soliton–
antisoliton sector. Using a slightly modified procedure proposed originally by Karowski and
Thun [10, 11], the soliton–breather amplitudes are constructed in section 5 and the breather
sector is discussed in section 6. By specifying the parameters to certain values we reduce the
model to several models in section 7. Our conclusions are stated in section 8.

2. q-deformed gamma functions and Jacobian elliptic functions

Many of the well-studied integrable quantum field theories which allow for backscattering,
such as the sine-Gordon model, are known to possess a generic form for their scattering
amplitudes which consists of infinite products of Euler’s gamma functions

S(θ) = f (θ)

∞∏
k=0

p∏
i=1

�(θ + kα + xi)

�(θ + kα + yi)
for

p∑
i=1

xi =
p∑

i=1

yi. (2.1)

The rapidity dependent prefactor f (θ) is usually some finite product of ratios of trigonometric
functions and the values of xi, yi, α, p are specific to each individual model. The constraint
on the sums of the xi, yi is a necessary condition for the convergence of the infinite product
(a proof of this can be found, e.g., in [12]). Below we will describe how the structure (2.1) can
be generalized very naturally by replacing in a controlled way the usual gamma functions by
their q-deformed counterparts and the trigonometric functions in the prefactor by their elliptic
version.

q-deformed quantities have turned out to be very useful objects as they allow, for instance,
to carry out elegantly (semi)-classical limits when the deformation parameter is associated
with Planck’s constant. In the elliptic sine-Gordon model we have the two free parameters
ν ∈ [0,∞) and � ∈ [0, 1] at our disposal. The former is the analogue of the coupling constant
in the sine-Gordon model1 and the latter is the modulus of the Jacobian elliptic functions.
It is the � which is associated most naturally with a deformation. Accordingly, we define a
deformation parameter q and its Jacobian imaginary transformed version, i.e. τ → −1/τ , as

q = exp(iπτ) q̂ = exp(−iπ/τ) τ = iK1−�/K�. (2.2)

1 This motivates to take ν to be positive, as negative values of it correspond to a regime in which according to the
arguments of Coleman [13] the ground state of the theory is not bounded from below.
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We introduced here the quarter periods K� of the Jacobian elliptic functions depending on
the parameter � ∈ [0, 1], defined in the usual way through the complete elliptic integrals
K� = ∫ π/2

0 (1 − � sin2 θ)−1/2 dθ . Recalling the well-known properties

lim
�→0

K� = lim
�→1

K1−� = π/2 and lim
�→0

K1−� = lim
�→1

K� → ∞ (2.3)

definitions (2.2) obviously mean that the trigonometric limits correspond to the ‘classical’
limit in the variables q̂, q as

lim
�→0

≡ lim
q̂→1

and lim
�→1

≡ lim
q→1

. (2.4)

It will turn out below that quantities in q̂ will be most relevant for our purposes and therefore
we state several identities directly in q̂, rather than q, even when they hold for generic values.
The most basic q-deformed objects one defines are q-deformed integers (numbers), for which
we take the convention

[n]q̂ := q̂n − q̂−n

q̂ − q̂−1
. (2.5)

They have the obvious properties

lim
�→0

[n]q̂ = n (2.6)

lim
�→0

[n + mτ ]q̂
[n′ + m′τ ]q̂

=
{

1 for m,m′ �= 0
n/n′ for m = m′ = 0.

(2.7)

With the motivation in mind we define a q-deformed version of Euler’s gamma function
mentioned at the beginning of this section

�q̂(x + 1) :=
∞∏

n=1

[1 + n]xq̂[n]q̂

[x + n]q̂[n]xq̂
. (2.8)

The crucial property of the function �q̂ , which coins also its name, is

lim
�→0

�q̂(x + 1) = lim
q̂→1

�q̂(x + 1) =
∞∏

n=1

n

n + x

(
1 + n

n

)x

= �(x + 1). (2.9)

We report now various properties of this function which will be useful below. We can relate
deformations in q and q̂ through

q̂(x+τ/2−1/2)2

q̂(y+τ/2−1/2)2

�q̂(y)�q̂(1 − y)

�q̂(x)�q̂(1 − x)
= �q(−y/τ)�q(1 + y/τ)

�q(−x/τ)�q(1 + x/τ)
. (2.10)

Frequently we have to shift the argument by integer values

�q̂(x + 1) = q̂x−1[x]q̂�q̂(x). (2.11)

Relation (2.11) can be obtained directly from (2.8). As a consequence of this we also have

�q̂(x + m) = �q̂(x)

m−1∏
l=0

q̂x+l−1[x + l]q̂ m ∈ Z (2.12)

�q̂(x) = �q̂(x − m)

m−1∏
l=0

q̂x−l−2[x − l − 1]q̂ m ∈ Z. (2.13)
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Whereas (2.11) and (2.12) hold for generic q, the following identities are only valid for q̂:

�q̂(1/2 − τ/2)�q̂(1/2 + τ/2) = �1/4�q̂(1/2)2 (2.14)

�q̂(x + 2τ)

�q̂(y + 2τ)
= �q̂(x)

�q̂(y)
(2.15)

p∏
i=1

�q̂(xi)�q̂(xi ± τ/2)

�q̂(yi)�q̂(yi ± τ/2)
=

p∏
i=1

�q̂2(xi)

�q̂2(yi)
if

p∑
i=1

xi =
p∑

i=1

yi (2.16)

lim
q̂→1

p∏
i=1

�q̂(xi ± τ/2)

�q̂(yi ± τ/2)
= 1 if

p∑
i=1

xi =
p∑

i=1

yi (2.17)

lim
q̂→1

1

�1/4
�q̂

(
x

2K�

∓ τ

2

)
�q̂

(
1 − x

2K�

± τ

2

)
= π for x �= 0. (2.18)

The constraint on the sums in (2.16) and (2.17) was already encountered in (2.1). Most of
these properties can be checked directly by means of the defining relation (2.8). We comment
on some of the derivations below.

The singularity structure will be important for the physical applications. It follows from
(2.8) that the �q̂-function has no zeros, but poles

lim
θ→θnm

�,p=mτ−n
�q̂(θ + 1) → ∞ for m ∈ Z n ∈ N. (2.19)

Furthermore, we will employ the Jacobian elliptic functions to generalize the prefactor f (θ)

in (2.1), for which we use the common notation pq(z) with p, q ∈ { s,c,d,n} (see, e.g., [14] for
standard properties). We derive important relations between the q-deformed gamma functions
and the Jacobian elliptic sn-function

sn(x) = 1

�
1
4

�q̂

(
x

2K�
∓ τ

2

)
�q̂

(
1 − x

2K�
± τ

2

)
�q̂

(
x

2K�

)
�q̂

(
1 − x

2K�

) (2.20)

= q
1
4 − ix

2K1−�

i�
1
4

�q

(
1
2 + ix

2K1−�

)
�q

(
1
2 − ix

2K1−�

)
�q

(
1 − ix

2K1−�

)
�q

(
ix

2K1−�

) . (2.21)

These relations can be used to obtain some of the above-mentioned expressions. For instance,
recalling that sn(K�) = 1, we obtain (2.14). With (2.8) we recover from this the well-known
identity sn(iK1−�/2) = i/�1/4. The trigonometric limits

lim
�→0

sn(x) = lim
q̂→1

sn(x) = π

�
(

x
π

)
�

(
1 − x

π

) = sin(x) (2.22)

lim
�→1

sn(x) = lim
q→1

sn(x) = 1

i

�
(

1
2 + ix

π

)
�

(
1
2 − ix

π

)
�

(
1 − ix

π

)
�

(
ix
π

) = tanh(x) (2.23)

can be read off directly recalling (2.3), (2.9) and presuming that (2.18) holds. We recall the
zeros and poles of the Jacobian elliptic sn(θ)-function, which in our conventions are located
at

zeros : θ lm
sn,0 = 2lK� + i2mK1−� l, m ∈ Z (2.24)

poles : θ lm
sn,p = 2lK� + i(2m + 1)K1−� l, m ∈ Z. (2.25)

We have now assembled the main properties of the q-deformed functions which we shall use
below.
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3. Affine Weyl group and the unitarity/crossing relations

The functional relations of crossing, unitarity and bootstrap for the scattering amplitudes are
usually solved by means of Fourier transformations, thus leading in general directly to integral
representations for the desired quantities. When solving these integrals one ends up with
infinite products over gamma functions of type (2.1) for scattering amplitudes in non-diagonal
theories or trigonometric functions when backscattering is absent. For the elliptic sine-Gordon
model so far only the analogue of the integral representation was presented [1] in form of a
discretized version. Instead of solving the discrete integrals in this function we provide here
a systematic procedure which leads directly to product solutions by utilizing the affine Weyl
group Ŵ(g).

Let us first assemble the necessary mathematical tools and jargon. In general an affine
Weyl reflection related to a simple root αi , of a Lie algebra g [15] may be realized by the map

σi,n(x) = x − (x · αi)αi + nα̌i (3.1)

where α̌i denotes a coroot and n an arbitrary integer. In particular, for n = 0 one recovers the
ordinary Weyl group W(g) and for x = 0 the translation group on the coroot lattice. Hence
the affine Weyl group may be thought of as a direct product

Ŵ (g) = W(g) ⊗ Ť (3.2)

with Ť denoting translations on the coroot lattice. For the case g = A1(Ŵ (g) ∼ D∞ the
infinite dihedral group) one has only one simple root and (3.1) becomes

σn(x) = nα − x. (3.3)

This group may be generated by two generators

σ1(x) = α − x and σ0(x) = −x (3.4)

having obviously the property σ 2
1 = σ 2

0 = 1. Defining then the transformation

σ := σ1σ0 (3.5)

one has

σn(x) = x + nα. (3.6)

We denote by N0, N1 the number of times the generators σ0, σ1 occur in an arbitrary element
of Ŵ (A1). Then two types of subgroups {σ 2n,N0}, {σ 2n,N1} ⊂ Ŵ (A1) are constituted by the
elements with N0 and N1 even, respectively. The right cosets of {σ 2n,N1} may be divided into
those with N1 even {σ 2nI,N1}, {σ 2nσ0, N1} and N1 odd {σ 2n+1I,N1}, {σ 2nσ1, N1}. Similarly
one may divide the right cosets of {σ 2n,N0} into those with N0 even {σ 2nI,N0}, {σ 2nσ1, N0}
and N0 odd {σ 2n+1I,N0}, {σ 2n+1σ1, N0}.

Assuming now that Ŵ (A1) acts in the complex rapidity plane one may specify α and
define the ‘unitarity’ and ‘crossing’ transformation on an arbitrary function f (θ) by

σ0f (θ) = f (−θ) σ1f (θ) = f (iπ − θ). (3.7)

Then one obtains

σnf (θ) = f (θ + niπ). (3.8)

We have now provided all the tools to solve the key equations in this context. In [1]
two functional relations for the soliton–antisoliton transmission amplitude (equations (2.10)
and (3.8) therein), which we denote by c(θ), were derived from crossing, unitarity and the
Yang–Baxter equations. Once this amplitude is known, some simple relations provided in [1]
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suffice to construct the remaining ones in the soliton–antisoliton sector. The equations to be
solved are

c(θ) = c(iπ − θ) (3.9)

c(θ)c(−θ) = sn2(π/ν)

sn2(π/ν) − sn2(iθ/ν)
. (3.10)

We now make an ansatz by taking the ratio of right cosets in which N0 is even and odd

c(θ) = κ
{σ 2nI,N0}{σ 2nσ1, N0}

{σ 2n+1I,N0}{σ 2n+1σ1, N0} = κ

∞∏
k=1

σ 2kρ(θ)σ 2kσ1ρ(θ)

σ 2k+1ρ(θ)σ 2k+1σ1ρ(θ)
(3.11)

= κ

∞∏
k=1

ρ[θ + 2π ik]ρ[−θ + 2π i(k + 1/2)]

ρ[θ + 2π i(k + 1/2)]ρ[−θ + 2π i(k + 1)]
. (3.12)

Here κ is a constant and ρ(θ) an arbitrary function which remains to be fixed. One observes
that the crossing relation (3.9) is solved by construction, whereas (3.10) requires that

κ2ρ(θ + 2π i)ρ(2π i − θ)

= �2
q̂

[− τ
2

]
�2

q̂

[
1 + τ

2

]
�q̂

[
θ̂ − λ

2

]
�q̂

[
1 − θ̂ + λ

2

]
�q̂

[−θ̂ − λ
2

]
�q̂

[
1 + θ̂ + λ

2

]
�2

q̂

[− λ
2

]
�2

q̂

[
1 + λ

2

]
�q̂

[
θ̂ − τ

2

]
�q̂

[
1 − θ̂ + τ

2

]
�q̂

[−θ̂ − τ
2

]
�q̂

[
1 + θ̂ + τ

2

] .

We replaced here in (3.10) the sn-by �q̂-functions using some standard identities for Jacobian
elliptic functions together with (2.20) and abbreviated for compactness

λ = −π/K�ν and θ̂ = iθ/2K�ν. (3.13)

The problem of solving (3.9) and (3.10) has now been reduced to the much simpler task of
fixing ρ(θ) and κ . We find

κ = �q̂

[− τ
2

]
�q̂

[
1 + τ

2

]
�q̂

[− λ
2

]
�q̂

[
1 + λ

2

] and ρi,j (θ) = ρn,i(θ)

ρd,j (θ)
(3.14)

where ρn,i(θ) and ρd,j (θ) could be any of the functions

ρn,1(θ + 2π i) = �q̂

[
θ̂ − λ

2

]
�q̂

[
1 − θ̂ + λ

2

]
ρd,1(θ + 2π i) = �q̂

[
θ̂ − τ

2

]
�q̂

[
1 − θ̂ + τ

2

]
ρn,2(θ + 2π i) = �q̂

[
θ̂ − λ

2

]
�q̂

[
1 + θ̂ + λ

2

]
ρd,2(θ + 2π i) = �q̂

[
θ̂ − τ

2

]
�q̂

[
1 + θ̂ + τ

2

]
ρn,3(θ + 2π i) = �q̂

[−θ̂ − λ
2

]
�q̂

[
1 + θ̂ + λ

2

]
ρd,3(θ + 2π i) = �q̂

[−θ̂ − τ
2

]
�q̂

[
1 + θ̂ + τ

2

]
ρn,4(θ + 2π i) = �q̂

[−θ̂ − λ
2

]
�q̂

[
1 − θ̂ + λ

2

]
ρd,4(θ + 2π i) = �q̂

[−θ̂ − τ
2

]
�q̂

[
1 − θ̂ + τ

2

]
.

Hence, we note that the solution of (3.9) and (3.10) is by no means unique and there exist
additional ones to the one presented in [1] in the form of a discrete integral representation.
The function in the numerator ρn,i(θ) may be selected by the requirement that we would like
to obtain the corresponding quantities of the sine-Gordon model in the trigonometric limit
and ρd,j (θ) by discarding solutions which yield undesired poles. We end up with the choice
ρ4,4(θ) = ρn,4(θ)/ρd,4(θ), which after substitution into (3.12) yields.
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c(θ) = �q̂

[
1 + τ

2

]
�q̂

[− τ
2

]
�q̂

[
1 + λ

2

]
�q̂

[− λ
2

]
∞∏

k=1

�q̂[θ̂ − kλ]�q̂[1 + θ̂ − (k − 1)λ]

�q̂[−θ̂ − kλ]�q̂[1 − θ̂ − (k − 1)λ]

× �q̂

[−θ̂ − (
k − 1

2

)
λ
]
�q̂

[
1 − θ̂ − (

k − 3
2

)
λ
]
�q̂

[
1 + θ̂ − kλ + τ

2

]
�q̂

[
θ̂ − (

k + 1
2

)
λ
]
�q̂

[
1 + θ̂ − (

k − 1
2

)
λ
]
�q̂

[
1 − θ̂ − (k − 1)λ + τ

2

]

× �q̂

[
θ̂ − kλ − τ

2

]
�q̂

[−θ̂ − (
k − 1

2

)
λ − τ

2

]
�q̂

[
1 − θ̂ − (

k − 1
2

)
λ + τ

2

]
�q̂

[−θ̂ − (k − 1)λ − τ
2

]
�q̂

[
θ̂ − (

k − 1
2

)
λ − τ

2

]
�q̂

[
1 + θ̂ − (

k − 1
2

)
λ + τ

2

] .

(3.15)

We want to conclude this section with a general remark on the method provided to solve
the functional relations (3.9) and (3.10). Of course, we could have started right away with
the ansatz (3.12) instead of introducing the affine Weyl group in the first place. However, this
formulation automatically supplies a certain systematics. To illustrate this further we provide
another example of some important functional relations occurring in the context of integrable
models, that is Watson’s equations, see, e.g., [16], for the minimal form factors

Fmin(θ + iπ) = Fmin(iπ − θ) and Fmin(θ) = Fmin(−θ)S(θ). (3.16)

Making here an ansatz by taking the ratio of right cosets in which N1 is even and odd

Fmin(θ) = κ
{σ 2nI,N1}{σ 2nσ0, N1}

{σ 2n+1I,N1}{σ 2nσ1, N1} = κ

∞∏
k=0

σ 2k−2ρ(θ)σ 2kσ0ρ(θ)

σ 2k−1ρ̄(θ)σ 2kσ1ρ̄(θ)
(3.17)

we see that the first equation in (3.16) is solved by construction whereas the second requires
that S(θ) = ρ(θ)σ1ρ̄(θ)/σ0ρ(θ)σ ρ̄(θ). Having a concrete expression for S(θ) one can now
easily determine ρ and ρ̄. For more complicated functional relations one may use groups of
higher rank.

4. Soliton–antisoliton sector

Let us now discuss in more detail the elliptic sine-Gordon model. Scattering amplitudes are
obtainable in general from the computation of matrix elements, but it is also well established
that in an integrable (≡ factorizable) theory they may be derived equivalently by analysing
the Zamolodchikov algebra. Its associativity corresponds to the Yang–Baxter equations. Its
generators are thought of as particle creation operators and therefore internal symmetries of
the model are respected by this algebra. Considering a theory with two particles which are
conjugate to each other, say a soliton Z and an antisoliton Z̄, one may demand a Z4-symmetry,
that is one requires invariance under Z → exp(iπ/2)Z, Z̄ → exp(−iπ/2)Z̄. The most
general version of the Zamolodchikov algebra respecting this symmetry then reads [1]

Z(θ1)Z(θ2) = a(θ12)Z(θ2)Z(θ1) + d(θ12)Z̄(θ2)Z̄(θ1) (4.1)

Z(θ1)Z̄(θ2) = b(θ12)Z̄(θ2)Z(θ1) + c(θ12)Z(θ2)Z̄(θ1) (4.2)

with rapidity difference θ12 = θ1 − θ2. The charge conjugated relations also hold, that is
Z ↔ Z̄. In comparison with the more extensively studied sine-Gordon model the difference
is the occurrence of the amplitude d in (4.1), i.e. the possibility that two solitons change into
two antisolitons and vice versa. Invoking the Yang–Baxter equations, crossing and unitarity
one finds the following solutions for the amplitudes
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a(θ) = �(θ)

∞∏
k=0

�q̂2 [θ̂ − (k + 1)λ]�q̂2 [1 + θ̂ − kλ]�q̂2

[−θ̂ − 1+2k
2 λ

]
�q̂2

[
1 − θ̂ − 1+2k

2 λ
]

�q̂2 [−θ̂ − (k + 1)λ]�q̂2 [1 − θ̂ − kλ]�q̂2

[
θ̂ − 1+2k

2 λ
]
�q̂2

[
1 + θ̂ − 1+2k

2 λ
]
(4.3)

b(θ) = − sn(iθ/ν)

sn(iθ/ν + π/ν)
a(θ) = b̂(θ)a(θ) (4.4)

c(θ) = sn(π/ν)

sn(iθ/ν + π/ν)
a(θ) = ĉ(θ)a(θ) (4.5)

d(θ) = −
√

�sn(iθ/ν)sn(π/ν)a(θ) = d̂(θ)a(θ) (4.6)

�(θ) = �q̂

[
1 + τ

2

]
�q̂

[− τ
2

]
�q̂

[
1 − θ̂ + λ

2 + τ
2

]
�q̂

[
θ̂ − λ

2 − τ
2

]
�q̂

[
1 + θ̂ + τ

2

]
�q̂

[−θ̂ − τ
2

]
�q̂

[
1 + λ

2 + τ
2

]
�q̂

[− λ
2 − τ

2

] . (4.7)

Here we use as a common factor a(θ) rather than c(θ) for which we have explained in the
previous section how to solve the key functional equations (3.9) and (3.10). We also used
relation (2.11) to simplify (3.15) and refer the reader to [1] for the details on how to relate the
different amplitudes to each other.

Our solutions (4.3)–(4.6) differ in form from the one presented in [1], where a discretized
version of an integral representation was provided. Instead, we derived here directly an
infinite product representation in the previous section, which is a natural generalization of a
very common version, of form (2.1), used in the context of the sine-Gordon model. One of
the advantages of our formulation is that it exhibits very explicitly the singularity structure.
Furthermore, it is easier to handle under shifts of the argument as in integral representations
such shifts will often be prohibited by convergence requirements.

4.1. Singularity structure

In order to extract the singularity structure for the amplitudes (4.3)–(4.6) we recall relations
(2.19), (2.24) and (2.25), which suffice to read off the poles and zeros of a(θ), b(θ), c(θ) and
d(θ). We depict them most conveniently in figure 1.

Explicitly, we just report here the poles which have potentially a chance to be situated
inside the physical sheet, i.e. 0 < Imθ < π . We take l, m ∈ Z, n ∈ N and associate always
two sets of poles θnm

a1,p
and θnm

a2,p
to a(θ), θnm

b1,p
and θnm

b2,p
to b(θ) etc.

θnm
a1,p

= 2mνK1−� + i2nνK� θnm
a2,p

= (2m + 1)νK1−� + i(π − 2nνK�)

θ lm
b1,p

= 2mνK1−� + i(π − 2lνK�) θ lm
b2,p

= (2m + 1)νK1−� + i2lνK�

θ lm
c1,p

= 2mνK1−� + i2lνK� θ lm
c2,p

= 2mνK1−� + i(π − 2lνK�)

θ lm
d1,p

= (2m + 1)νK1−� + i2lνK� θ lm
d2,p

= (2m + 1)νK1−� + i(π − 2nνK�).

(4.8)

One readily sees from (4.8) that if one restricts the parameter ν � π/2K� all poles move out
of the physical sheet into the non-physical one, where they can be interpreted in principle as
resonances, i.e. unstable particles. This was already stated in [1] where the choice ν � π/2K�

was made in order to avoid the occurrence of tachyonic states. In fact, even in that regime there
are Tachyons present, since the poles in the non-physical sheet with negative real part cannot
be explained on the basis of the Breit–Wigner formula. Their occurrence can be avoided by
an additional breaking of parity (see discussion in [17]). The restriction on the parameters
makes the model somewhat unattractive as this limitation eliminates the analogue of the entire
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Figure 1. Poles of the soliton–soliton amplitude a(θ) = b(iπ − θ) for the concrete values
ν = 0.25, � = 0.344, that is νK1−� ∼ 0.504 and νK� ∼ 0.435. The arrows indicate in which
directions the ‘strings’ of poles are extended for growing integer values n or m.

breather sector which is present in the sine-Gordon model, such that also in the trigonometric
limit one only obtains the soliton–antisoliton sector of that model, instead of a theory with a
richer particle content. For this reason, the arguments outlined in the introduction and the fact
that the constraint does not yield any Tachyon free theory anyway, here we relax the restriction
on ν. The poles

θn0
b1,p

= θn0
c2,p

for 0 < n < nmax = [π/2νK�], n ∈ N (4.9)

are located on the imaginary axis in the physical sheet and are therefore candidates for the
analogue of the nth-breather bound states in the sine-Gordon model. We indicate here the
integer part of x by [x]. In other words, there are at most nmax − 1 breathers for fixed ν and
�. The price one pays for the occurrence of these new particles in the Z4-model is that one
unavoidably also introduces additional Tachyons into the model as the poles always emerge
in ‘strings’. It remains to be established whether the poles (4.9) may really be associated with
a breather type behaviour.

5. Soliton–breather amplitudes

Once the solitonic sector of a theory is constructed there is a well-defined bootstrap procedure
proposed by Karowski and Thun [10, 11], which allows us to complete the theory and
to construct also the breather sector. There are numerous solutions known for a non-trivial
soliton sector, since for instance for all affine Toda field theories with purely imaginary coupling
constant the Yang–Baxter equations can be solved by representations of the corresponding
quantum group [18–20]. Nonetheless, the completion of the models has not been carried out
for several cases [21–23]. In contrast, one should note that there exist many scalar theories
which do not possess a known solitonic counterpart. One reason for that is, that the procedure
[10, 11] is not reversible and one can in general not construct the solitonic sector from the
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breather sector alone. Drawing a loose analogy to group theory one may think of the breather
sector as a subgroup, which, of course, does not contain the information of a larger group in
which it might be embedded. It is very desirable to complete the picture, tie up the loose ends
and construct the respective missing sectors.

To start the construction, one first of all has to find creation operators for the particles
corresponding to the bound state poles in the soliton sector. We presume here that the particles
related to the poles (4.9) are breathers and borrow some intuition from the classical theory,
exploiting the fact that a breather is an oscillatory object made out of a superposition of a
soliton and an antisoliton. For the sine-Gordon model this prescription was used in [11] to
define the nth-breather particle creation operator. Even though we do not have a classical
counterpart for the elliptic sine-Gordon model, we follow the same approach here and define
the auxiliary state

Zn(θ1, θ2) := 1√
2

[Z(θ1)Z̄(θ2) + (−1)nZ̄(θ1)Z(θ2)]. (5.1)

Obviously, this state has properties of the classical sine-Gordon breather being chargeless and
having parity (−1)n. Choosing thereafter the rapidities such that the state (5.1) is on-shell, we
can speak of a breather bound state

lim
(p1+p2)2→m2

bn

Zn(θ1, θ2) ≡ lim
θ12→θ+θ

bn
12

Zn(θ1, θ2) = Zn(θ). (5.2)

Here θ
bn

12 is the fusing angle related to the poles in the soliton–antisoliton scattering amplitudes.
To simplify notation we abbreviate in what follows aij = a(θij ), bij = b(θij ), etc. With the
help of the braiding relations (4.1) and (4.2) we compute the scattering amplitude between a
soliton and the auxiliary breather states (5.1)

Zn(θ1, θ2)Z(θ3) = 1√
2

[a13b23Z(θ3)Z(θ1)Z̄(θ2) + (−1)nb13a23Z(θ3)Z̄(θ1)Z(θ2)

+ c13c23Z(θ3)Z̄(θ1)Z(θ2) + (−1)nd13d23Z(θ3)Z(θ1)Z̄(θ2)

+ b13c23Z̄(θ3)Z(θ1)Z(θ2) + (−1)nc13a23Z̄(θ3)Z(θ1)Z(θ2)

+ d13b23Z̄(θ3)Z̄(θ1)Z̄(θ2) + (−1)na13d23Z̄(θ3)Z̄(θ1)Z̄(θ2)]. (5.3)

Going now on-shell in the sense as defined in (5.2), splitting the fusing angle into
θ1 = θ0 − θn

21

/
2, θ2 = θ0 + θn

21

/
2 and denoting θ03 = θ the following identities can be

shown to hold:

b13c23 + (−1)nc13a23 = 0 for θn
21 = i(π − 2nνK�) (5.4)

d13b23 + (−1)na13d23 = 0 for θn
21 = i(π − 2nνK�) (5.5)

b13a23 + (−1)nc13c23 = a13b23 + (−1)nd13d23 for θn
21 = i(π − 2nνK�). (5.6)

Therefore, the braiding relation (5.3) reduces to a diagonal scattering process, i.e. there is no
backscattering amplitude. We obtain after some algebra

Zn(θ0)Z(θ3) = Sbns(θ)Z(θ3)Zn(θ0) (5.7)

with

Sbns(θ) = a13b23 + (−1)nd13d23 (5.8)

= sn(iθ/ν − π/2ν + nK�)

sn(iθ/ν + π/2ν + nK�)

[
�sn2 π

ν
sn2

(
iθ

ν
+

π

2ν
+ nK�

)
− 1

]
a13a23 (5.9)
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where

a13a23 = �13�23
�q̂2

[
1 + θ̂ + λ

4 − n
2

]
�q̂2

[−θ̂ − λ
4 − n

2

]
�q̂2

[−θ̂ + λ
4 + n

2

]
�q̂2

[
θ̂ + λ

4 − n
2

]
�q̂2

[
1 − θ̂ + λ

4 − n
2

]
�q̂2

[
θ̂ − λ

4 − n
2

]
�q̂2

[
θ̂ + λ

4 + n
2

]
�q̂2

[−θ̂ + λ
4 − n

2

]

×
∞∏

k=0

[
θ̂ − n

2 + λ
4 − kλ

]
q̂2

[−θ̂ + n
2 − λ

4 − kλ
]
q̂2

[
θ̂ + n

2 + λ
4 − kλ

]
q̂2

[−θ̂ − n
2 − λ

4 − kλ
]
q̂2[−θ̂ − n

2 + λ
4 − kλ

]
q̂2

[
θ̂ + n

2 − λ
4 − kλ

]
q̂2

[−θ̂ + n
2 + λ

4 − kλ
]
q̂2

[
θ̂ − n

2 − λ
4 − kλ

]
q̂2

×
n−1∏
l=1

[
θ̂ − n

2 + λ
4 − kλ + l

]2
q̂2

[−θ̂ + n
2 − λ

4 − kλ − l
]2
q̂2[−θ̂ − n

2 + λ
4 − kλ + l

]2
q̂2

[
θ̂ + n

2 − λ
4 − kλ − l

]2
q̂2

. (5.10)

Similarly, we compute the braiding of Zn(θ1, θ2)Z̄(θ3) which leads us to

Sbns̄(θ) = Sbns(θ). (5.11)

Denoting the anti-particle always by an overbar, we deduce from (5.11) that the breathers are
self-conjugate due to the general relation Sab = Sāb̄, that is b̄n = bn.

The matrix Sbns(θ) contains various types of poles. (i) simple and double poles inside the
physical sheet beyond the imaginary axis, which are redundant from our point of view as they
are of a tachyonic nature, (ii) double poles on the imaginary axis which can be explained by
the usual ‘box diagrams’ corresponding to the Coleman–Thun mechanism [24], (iii) simple
poles in the non-physical sheet which can be interpreted as unstable particles (see, e.g., [17]
and references therein) and (iv) one simple pole on the imaginary axis inside the physical sheet
at θ = iπ/2 + inνK� which is associated with a soliton produced as an nth-breathers-soliton
bound state.

6. Breather–breather amplitudes

We now proceed similarly as in the previous section and compute the scattering amplitudes
of the breathers among themselves. As mentioned, this is a very interesting sector as, under
certain circumstances which will be specified below, it usually closes independently from the
remaining sectors of the model. Similarly as in (5.7) we exchange now two of the auxiliary
states (5.1)

Zn(θ1, θ2)Zm(θ3, θ4) = Sbnbm
(θ1, θ2, θ3, θ4)Zm(θ3, θ4)Zn(θ1, θ2). (6.1)

This is a somewhat cumbersome computation and we will not report here the analogue
expression of (5.3), since it involves 64 terms, each one of them consisting of a product
of four amplitudes and four creation operators. As in the previous section, in the next
step we have to go on-shell by specifying the fusing angles as in (5.2). We choose for
this purpose θ1 = θ0 − θn

21

/
2, θ2 = θ0 + θn

21

/
2, θ3 = θ ′

0 − θm
43

/
2, θ4 = θ ′

0 + θm
43

/
2 with

θm
43 = i(π − 2mνK�), θ

n
21 = i(π − 2nνK�), θ = θ0 − θ ′

0 such that

θ13 = θ + i(n − m)νK� θ14 = θ − π i + i(n + m)νK� (6.2)

θ24 = θ + i(m − n)νK� θ23 = θ + π i − i(n + m)νK�. (6.3)

For this choice of the fusing angles there are several on-shell identities of the type (5.4)–(5.6).
Extracting here the common factors of aij we compute

(−1)m(b̂24ĉ13ĉ14 + b̂14d̂23d̂24) + (−1)n(b̂13ĉ14ĉ24 + b̂14d̂13d̂23)

+ ĉ13ĉ14ĉ23ĉ24 + b̂14b̂23 + (−1)m+n(b̂14b̂23d̂13d̂24 + b̂13b̂24ĉ14ĉ23)

= (−1)m(b̂23d̂13d̂14 + b̂13ĉ23ĉ24) + (−1)n(b̂24ĉ13ĉ23 + b̂23d̂14d̂24)

+ d̂13d̂14d̂23d̂24 + b̂13b̂24 + (−1)m+n(d̂14d̂23 + ĉ13ĉ24) (6.4)
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and

(−1)m(b̂13b̂24d̂14 + d̂13d̂23d̂24) + (−1)n(ĉ13ĉ24d̂14 + d̂23)

+ b̂13ĉ23ĉ24d̂14 + b̂23d̂13 + (−1)m+n(b̂23d̂24 + b̂24ĉ13ĉ23d̂14) = 0 (6.5)

(−1)m(b̂13b̂14ĉ24 + ĉ14d̂13d̂23) + (−1)n(b̂14b̂24ĉ13 + ĉ14d̂23d̂24)

+ b̂23ĉ14d̂13d̂24 + b̂13b̂14b̂24ĉ23 + (−1)m+n(b̂23ĉ14 + b̂14ĉ13ĉ23ĉ24) = 0. (6.6)

Relations (6.5) and (6.6) lead to a cancellation of the backscattering terms in an analogous
fashion as in (5.3). With (6.4 ) we indeed end up with a diagonal scattering matrix

Zn(θ0)Zm(θ ′
0) = Sbnbm

(θ)Zm(θ ′
0)Zn(θ0) (6.7)

where

Sbnbm
(θ) = a13a14a23a24[ĉ13ĉ14ĉ23ĉ24 + b̂14b̂23 + (−1)n+m(b̂14b̂23d̂13d̂24 + b̂13b̂24ĉ14ĉ23)

+ (−1)m(b̂24ĉ13ĉ14 + b̂14d̂23d̂24) + (−1)n(b̂14d̂13d̂23 + b̂13ĉ14ĉ24)] (6.8)

=
[

1 − �sn2 π

ν
sn2

(
iθ

ν
+ (n + m)K�

)] [
1 − �sn2 π

ν
sn2

(
iθ

ν
+ (n + m)K� +

π

ν

)]

× sn(iθ/ν − π/ν + (n + m)K�)

sn(iθ/ν + π/ν + (n + m)K�)
a13a14a23a24 (6.9)

and

a13a14a23a24 = �13�14�23�24
�q̂2

(
1 + m

2 + n
2 + θ̂ + λ

2

)
�q̂2

(−m
2 − n

2 − θ̂ − λ
2

)
�q̂2

(
1 + m

2 + n
2 − θ̂ + λ

2

)
�q̂2

(−m
2 − n

2 + θ̂ − λ
2

)

×
∞∏

k=1

n−1∏
l=1

[
m
2 + n

2 − l − θ̂ − kλ + λ
]
q̂2

[−m
2 − n

2 + l + θ̂ − kλ
]
q̂2[

m
2 + n

2 − l + θ̂ − kλ + λ
]
q̂2

[−m
2 − n

2 + l − θ̂ − kλ
]
q̂2

×
∞∏

k=0

n−1∏
l=1

[
m
2 + n

2 − l + θ̂ − λ
2 − kλ

]
q̂2

[−m
2 − n

2 + l − θ̂ − λ
2 − kλ

]
q̂2[

m
2 + n

2 − l − θ̂ − λ
2 − kλ

]
q̂2

[−m
2 − n

2 + l + θ̂ − λ
2 − kλ

]
q̂2

×
∞∏

k=1

m−1∏
l=0

[
m
2 + n

2 − l − θ̂ − kλ + λ
]
q̂2

[−m
2 − n

2 + l + θ̂ − kλ
]
q̂2[

m
2 + n

2 − l + θ̂ − kλ + λ
]
q̂2

[−m
2 − n

2 + l − θ̂ − kλ
]
q̂2

×
∞∏

k=0

m−1∏
l=0

[
m
2 + n

2 − l + θ̂ − λ
2 − kλ

]
q̂2

[−m
2 − n

2 + l − θ̂ − λ
2 − kλ

]
q̂2[

m
2 + n

2 − l − θ̂ − λ
2 − kλ

]
q̂2

[−m
2 − n

2 + l + θ̂ − λ
2 − kλ

]
q̂2

.

(6.10)

The latter expression (6.10) is tailored to make contact to the expressions in the literature
corresponding to the trigonometric limit.

The matrix Sbnbm
(θ) also exhibits several types of poles. (i) simple and double poles

inside the physical sheet beyond the imaginary axis, (ii) double poles located on the imaginary
axis, (iii) simple poles in the non-physical sheet and (iv) one simple pole on the imaginary axis
inside the physical sheet at θ = θb = iν(n + m)K� which is related to the fusing process of
two breathers bn + bm → bn+m. To be really sure that this pole admits such an interpretation,
we have to establish that the imaginary part of the residue is strictly positive, i.e.

−i lim
θ→θb

(θ − θb)Sbnbm
(θ) > 0. (6.11)
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Since the scattering process is parity invariant, we have Sbnbm
= Sbmbn

, such that we can choose
without loss of generality n � m. With this choice we compute

Resθ→θb
Sbnbm

(θ) = i(−1)n+m 2K1−�ν

π
sinh

[
π

K�

K1−�

(n + m)

] (
1 − �sn4 π

ν

)
q̂−2(n+m)(n+m+λ+1)

×�[iπ ]�[2inνK�]�[2inνK�]�[2i(n + m)νK� − iπ ]
n−1∏
l=1

[n + m − l]q̂2

[−l]q̂2

m−1∏
l=1

[n + m − l]q̂2

[−l]q̂2

×
∞∏

k=1


 [n − kλ]q̂2 [−n − kλ]q̂2

[
n + λ

2 − kλ
]
q̂2

[−n + λ
2 − kλ

]
q̂2 [n + m − kλ]q̂2

[m − kλ]q̂2 [−m − kλ]q̂2

[
m + λ

2 − kλ
]
q̂2

[−m + λ
2 − kλ

]
q̂2

[
n + m + λ

2 − kλ
]
q̂2

×
[−n − m − kλ]q̂2

[
λ
2 − kλ

]2
q̂2[−n − m + λ

2 − kλ
]
q̂2 [−kλ]2

q̂2

m−1∏
l=1

[n + m − l − kλ]2
q̂2 [l − n − m − kλ]2

q̂2

[−l − kλ]2
q̂2 [l − kλ]2

q̂2

×
[

λ
2 + n + m − l − kλ

]2
q̂2

[
λ
2 − n − m + l − kλ

]2
q̂2[

λ
2 − l − kλ

]2
q̂2

[
λ
2 + l − kλ

]2
q̂2


 . (6.12)

The first line in (6.12) equals i(−1)n+mκ with κ ∈ R
+. Noting that the functions � with

the above arguments are positive real numbers, the second line in (6.12) is (−1)n+mκ ′ with
κ ′ ∈ R

+. Recalling finally that n + m < −λ/2 we deduce that
∏∞

k=1( ) ∈ R
+ such that (6.11)

is indeed satisfied.
Due to the factorizability of the theory this fusing process can be associated in the usual

fashion with a bootstrap equation. For consistency the following equations have to be satisfied:

Slbn+m
(θ) = Slbn

(θ + iνmK�)Slbm
(θ − iνnK�) for l ∈ {bk, s, s̄} k,m + n < nmax.

(6.13)

With some algebra we verified (6.13) for the amplitudes derived above ( 5.9) and (6.9).

7. Reductions of the Z4-model

The elliptic sine-Gordon model can be considered as a master theory, which contains many
other theories as submodels. By choosing various specific values for the two free parameters
of the model � and ν, one obtains these different types of theories. For the different choices
we have the following interrelations:

elliptic sine-Gordon
1/ν→2nK�/π+2imK1−�/π− − − − − − − −→ elliptic D

(1)
n+1-affine Toda theory

|
|

� → 0
|
↓

↙
m �= 0, � → 0

↓
free theory

↑
1/ν → i∞

↗

|
|

m = 0, � → 0
|
↓

sine-Gordon
−−−−−−−−→

1/ν → n minimal D
(1)
n+1-affine Toda theory

(7.1)

Let us discuss this schematic diagram in more detail.
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7.1. Trigonometric limits

As was already stated in [1], when carrying out one of the trigonometric limit � → 0 for the
Z4-model for the amplitudes (4.3)–(4.6), one recovers the soliton sector of the sine-Gordon
model. In our formulation this can be seen directly, as we only have to use relations (2.9)
and (2.22) for the �q̂- and sn-functions and note that lim�→0 � = 1. We have employed
here the somewhat generalized conventions of the sine-Gordon model formulation in [16].
To make contact with the infinite product representation as presented in the literature (see
equations (2.16) and appendix C in [16]), we also have to use the identity
∞∏

k=0

�2
(

2k
ν

+ α
)

�
(

2k
ν

+ α + γ
)
�

(
2k
ν

+ α − γ
) =

∞∏
k=0

�2
(

kν
2 + αν

2

)
�

(
kν
2 + αν

2 + γ ν

2

)
�

(
kν
2 + αν

2 − γ ν

2

) (7.2)

after the limit � → 0 is performed. As we demonstrated above, when relaxing the
constraint ν � π/2K�, the Z4-model exhibits also a breather sector. It is easily seen that
the corresponding amplitudes can also be obtained in that limit. The expressions for the
soliton–breather amplitude (5.9) and (5.10) are tailored in such a way that we obtain the
corresponding amplitude in the sine-Gordon model (see equation (20) in [11]) upon the use of
(2.9), (2.6) and

sin(xπ/λ)

sin(yπ/λ)
=

∞∏
k=1

(x − kλ + λ)(−x − kλ)

(y − kλ + λ)(−y − kλ)
. (7.3)

Similarly, we recover the breather–breather amplitude of the sine-Gordon model (see
equation (22) in [11]) using in addition to (7.3) also

cos(xπ/λ)

cos(yπ/λ)
=

∞∏
k=0

(
y − kλ − λ

2

)(−y − kλ − λ
2

)
(
x − kλ − λ

2

)(−x − kλ − λ
2

) . (7.4)

There is, of course, the other trigonometric limit � → 1, which one could in principle
compute by exploiting the relations between the q and q̂-deformed quantities mentioned in
section 2. However, just by considering the pole structure (4.8) and recalling (2.3), we see
that there are no poles left inside the physical sheet which could produce a bound state, such
that this theory will only possess a soliton sector. We will not consider this case here.

Whereas these limits served essentially only as a consistency check, the next one will lead
to a new type of theory.

7.2. Diagonal limit

For the sine-Gordon model it is well known [25, 26] that in the limit ν → 1/n the
backscattering amplitude vanishes and one obtains a diagonal S-matrix which can be identified
with a minimal D

(1)
n+1-affine Toda field theory. We observe that there is an analogue to this

behaviour in the Z4-model as also in this case the backscattering amplitudes vanish in the limit

1/ν → 1/νn,m = (2nK� + i2mK1−�)/π. (7.5)

We find

lim
ν→νn,m

c(θ) = 0 for n,m ∈ Z (7.6)

lim
ν→νn,m

d(θ) = 0 for n,m ∈ Z. (7.7)

For the remaining amplitudes (4.3) and (4.4) in the soliton sector we compute for this limit
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lim
ν→νn,m

b(θ) = (−1)n+1ad(θ) for n,m ∈ Z (7.8)

lim
ν→νn,m

a(θ) = ad(θ) for n,m ∈ Z (7.9)

where

ad(θ) =
∞∏

k=0

n−1∏
l=0

[− θ
iπ (n + mτ) + (2k + 1)n + l

]
q̂2

[
θ
iπ (n + mτ) + (2k + 1)n − l

]
q̂2[

θ
iπ (n + mτ) + (2k + 1)n + l

]
q̂2

[− θ
iπ (n + mτ) + (2k + 1)n − l

]
q̂2

× �q̂

[
1 + τ

2

]
�q̂

[− τ
2

]
�q̂

[
1 − n +

(
1
2 − m

)
τ + θ

iπ (n + mτ)
]
�q̂

[
n +

(
m − 1

2

)
τ − θ

iπ (n + mτ)
]

�q̂

[
1 − n +

(
1
2 − m

)
τ
]
�q̂

[
n +

(
m − 1

2

)
τ
]
�q̂

[
1 + τ

2 − θ
iπ (n + mτ)

]
�q̂

[− τ
2 + θ

iπ (n + mτ)
]
.

(7.10)

This is obtained when replacing in (4.3)

lim
ν→νn,m

θ̂ → − θ

iπ
(n + mτ) and lim

ν→νn,m

λ → −2(n + mτ) (7.11)

and exploiting property (2.15) thereafter. Of course, one may also carry out the limit (7.5)
for the soliton–breather and for the breather–breather amplitude. We do not report those
expressions here as they are quite obvious, unlike in (7.10), where several cancellations could
be carried out and the infinite product in the �q̂ could be turned into products in [ ]q̂2 . The
scattering matrix obtained in this way belongs to a new type of theory. One should mention
that the case m �= 0, which complexifies the coupling constant is most likely only of a formal
nature, but we expect the case m = 0 to be a meaningful theory. However, this requires more
analysis especially since there are additional Tachyons present.

Let us now carry out the limit � → 0 and verify that the above-mentioned diagram (7.1) is
indeed commutative. For the cases m = 0, n � 3 we reproduce the entire scattering matrix of
the minimal D

(1)
n+1-affine Toda field theory. In particular when carrying out the limit in (7.10)

we find, upon the use of (7.3)

lim
q̂→1,m=0

ad(θ) =
∞∏

k=0

n−1∏
l=0

[n(−x + 2k + 1) + l][n(x + 2k + 1) − l]

[n(x + 2k + 1) + l][n(−x + 2k + 1) − l]

=
n−1∏
l=0

sinh 1
2

(
θ + iπl

n

)
sinh 1

2

(
θ − iπl

n

) (7.12)

which coincides with the Sn+1,n+1 = Sn,n-amplitudes in the minimal D
(1)
n+1-affine Toda field

theory. For the cases m = 0, n = 1, 2 we reproduce the minimal A
(1)
1 ⊗ A

(1)
1 , A

(1)
3 -affine Toda

field theories. We remark that these correspondences hold up to a change of statistics, that is
some amplitudes are only recovered up to a factor of −1, which changes bosonic to fermionic
statistics or vice versa. These facts make it natural to call the above theories elliptic versions
of the associated limiting theory. As we mentioned above, taking the breather sector alone
constitutes a consistent theory in itself. For q̂ = 1,m = 0 we have minimal A

(2)
2n−2 ⊂ D

(1)
n+1-

affine Toda field theory, a property which transcends also into the elliptic version. A final
comment is related to the centre of the diagram. We find limq̂→1,m�=0 ad(θ) = 1 simply due to
property (2.7).

8. Conclusion

We demonstrated that when one relaxes the constraint on the coupling constants, one can
construct a consistent breather sector for the elliptic sine-Gordon model. The scattering of the
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breathers among themselves and with the soliton sector satisfies a bootstrap equation related to
the fusing of two breathers to a third. For the formulation of the scattering amplitudes we used
q-deformed functions as natural objects. Roughly speaking one replaces in the amplitudes in
the soliton–antisoliton sector the infinite products of Euler’s gamma functions by a q-deformed
version and in the infinite product in the breather sector integers by q-deformed ones. This
tailors the models automatically in a form which allows us to carry out various limits. Instead
of carrying out the bootstrap analysis one could alternatively take a spin chain as a starting
point and use a method based on the algebraic Bethe ansatz, pursued, for instance, in [27], to
compute the breather S-matrix amplitudes. It would be interesting to compare that approach
with our findings.

In the diagonal limit we obtain an interesting new theory, which can be viewed as an
elliptic generalization of the minimal D

(1)
n+1-affine Toda field theory. In [28] we proposed a

procedure which also leads to elliptic generalizations of theories whose scattering amplitudes
can be expressed in terms of trigonometric functions. The theories obtained in that fashion
were, however, of a quite different nature. The procedure in [28] works strictly on the principle
that there are no redundant poles present in the amplitudes, such that as a difference the string
of tachyonic states which was encountered here was confined to the non-physical sheet where
they can be viewed as unstable particles. Further investigation is needed to clarify more the
interpretation of these models and, in particular, to establish whether they possess a meaningful
conformal limit [29].

From a mathematical point of view it will be interesting to generalize the method of
section 3 to affine Weyl groups of higher rank.
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